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We describe some results about existence of manifold valued stochastic partial differential
equations obtained in recent years.

1.1. Introduction

Over the past two decades the exploration of Stochastic Partial Differential Equations
(briefly SPDEs) has become a rapidly expanding area in Mathematics and Physics. In
addition to applications to some fundamental problems in Mathematical, Physical and Life
Sciences, interest in such studies is motivated by a desire to understand and control the
behaviour of complex systems that appear in many areas of natural and social sciences.
Small random fluctuations such as thermal are present in all complex systems even if their
fundamental theory is deterministic. For example, the 1D Nonlinear Schrödinger Equation
(NLSE) arises in optical waveguide propagation and in optical communication, see e.g.
Falkovich et al.27

It is generally accepted that differential equations serve as a mathematical and rigor-
ous support of models in natural sciences. In general, they model ideal physical situations
(propagation of waves or heat equations) neglecting external influences such as turbulence
or random impacts. These effects are too complicated to be modeled in detail due to its im-
mense quantity and unpredictable character. Therefore, stochastic perturbations are intro-
duced to model the statistical errors caused by the external forces and random fluctuations,
and computer simulations corroborate the accuracy of models of this type. During the last
sixty years, it has become clear that sometimes better and more realistic descriptive results
can be achieved by adding a stochastic perturbation to a particular differential equation.

1



September 22, 2011 9:40 World Scientific Review Volume - 9.75in x 6.5in Master˙new

2 Zdzisław Brzeźniak, Beniamin Goldys and Martin Ondreját

This corresponds to unknown and unpredictable fluctuations that are omnipresent in the
nature, known only from the statistical point of view, and without them, every model is a
mere simplification of reality that neglects background noises. Equations with stochastic
terms are not, of course, already perfect descriptions of reality but they take into account
random influences that are not present in the corresponding deterministic equations.

For example thermal effects in micromagnetics have been studied since the work1 by
Brown. They can be incorporated into the model by modifying the effective energy in the
LLEs to include a random term. One of many important applications of these equations is
in magneto-electronics, where submicron-sized ferromagnetic elements are the main build-
ing blocks of information storage devices. The smaller these elements are the effects of
thermal noise become more crucial, e.g. the ability of the noise to change the magnetiza-
tion what leads to reducing the data-retention time of the memory element61 and thus the
noise-induced magnetization reversal has received a lot of attention in the magnetics com-
munity, from experimental, analytical, and numerical points of view, see e.g. Braun (1994)
and E (2003). Recently, these equations have been investigated by Grinstein and Koch
(2005) from the numerical point of view, and by Kohn et al. in44 from more mathematical
viewpoint.

In the physical literature equations similar to geometric evolution equations appear es-
pecially concerning the kinetic theory of phase transitions, e.g.40 and the theory of stochas-
tic quantization, e.g.59 In these theories, the solution f ∈ C(S1,M) of the SPDE ex-
presses a continuum like spin field distributed over the unit circle S1 with the space of
(spin-)variables constrained to the manifold M . In this field the first rigorous steps towards
stochastic models have been undertaken in the direction of parabolic equations, see e.g.
Funaki30 and Carroll,15 who investigated the existence, uniqueness, regularity and approx-
imations of global solutions of stochastic heat equations in loop manifolds. On the other
hand, there has not been any work published on stochastic geometric wave equations so far.

The present paper consists of essentially two independent parts. However there is a
unifying background for both of them, i.e. they are about stochastic geometric equations.
The second part of this article (Sections 1.4 - 1.10) is devoted to description of some recent
results obtained by the 1st and the 3rd named authours on stochastic geometric wave equa-
tions while in the the first part (sections 1.2 and 1.3) we present new results on geometric
heat flow where the target manifold is a general compact riemannian manifold. In Part I we
planned to present the results from the PhD thesis by A Carroll and still unfinished paper
by the 1st named authour and Carroll but while working on this project we realised that it
would be much more natural to write down an account on how the detailed approach from
the first paper by the 1st and the 3rd named authours,1112 can work in the case of stochastic
heat flow equation in the case when the domain is one dimensional. The one dimension-
ality of the domain makes it possible to work with the energy space, i.e. the Hilbert space
H1,2(S1,Rd) as the state space since only in this case the embedding the energy space into
the Banach spaceC(S1,Rd) of continuous functions holds. During researching on this new
project we observed that some techniques that had been developed in,9 see Lemma 1.4, are
essential. Let us point out a difference between our proof of the global existence and the
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one in the deterministic case by Eells-Sampson24 and Hamilton.37 While in the latter papers
the crucial step is to prove that the energy density solves certain scalar parabolic equation,
in our case the crucial step is to prove an inequality for the L2-norm of the gradient of the
solution, see (1.43) which is based on certain geometric property (1.41) of the manifoldM .

It is our pleasure to acknowledge that our interest in the field of geometric stochastic
PDEs grew out of studying the fundamental works of David Elworthy on infinite dimen-
sional stochastic analysis, see for instance his monograph.25 In particular, our works6 and4

were strongly motivated by some aspects of his research. Moreover, David’s ideas directed
us towards it’s PDEs generalisation.4

1.2. Stochastic Geometric heat flow on S1 × R+

In this section we assume that M is a compact riemannian manifold that is isometri-
cally embedded into an Euclidean space Rd. We consider the following one-dimensional
stochastic geometric heat flow equation

∂tu = Dx∂xu+ Yu ◦ Ẇ , (1.1)

with initial data

u(0, ·) = ξ(·), (1.2)

where S1 is the unit circle (usually identified with the interval [0, 2π), Y is a C1-class
section of a certain vector bundle M over M , see Theorem 1.1, and ξ : S1 → M is a
continuous map. We assume that (Ω,F , (Ft)t≥0,P) is a filtered probability space where
F = (Ft)t≥0 is a filtration such that F0 contains all P-negligible sets. Let us denote
by S = (e−tA)t≥0 the C0 analytic semigroup of bounded linear operators on the space
L2(S1,Rd), generated by an operator A := −∆ whose domain Dom(A) is equal to the
Sobolev space H2,2(S1,Rd).

Let S denote the second fundamental tensor (form) of the manifold M with respect
to the above mentioned isometric embedding M ⊂ Rd. In particular, for each p ∈ M ,
Sp : TpM ×TpM → NpM , where Np := Rd	TpM is the normal space to p with respect
to the standard scalar product in Rd. The operator Dx∂x that appears in equation (1.1) acts
on smooth curves γ : S1 →M and is defined by the formula (see for instance [12, section
2] and references therein)

Dx∂xγ(x) = ∂xxγ(x)− Sγ(x)(∂xγ(x), ∂xγ(x)), x ∈ S1. (1.3)

We note that the following fundamental property of the operator Dx∂x, see [12, formula
(2.6)],

〈∂xxγ(x)− Sγ(x)(∂xγ(x), ∂xγ(x)), ∂xxγ(x)〉 = |∂xxγ(x)− Sγ(x)(∂xγ(x)|2, x ∈ I.
(1.4)

As far as the noise is concerned, we make the following standing assumption.
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Assumption 1.2.1. W = (W (t))t≥0 is an E-valued F-Wiener process, where E is a sepa-
rable Banach space such that for some fixed natural number n, E ⊂ H1(S1,Rn) continu-
ously.

Remark 1.1. It follows from Assumption 1.2.1 that the Reproducing Kernel Hilbert Space
K of the law of W (1) is contained inE (and so inH1(S1,Rn)) and the natural embedding
i : K ↪→ E is γ-radonifying.
Let us recall that if Λ : E → H is a bounded linear map, where H is a separable Hilbert
space, then Λ ◦ i : K→ H is γ-radonifying, i.e. Hilbert-Schmidt.
If Λ : E × E → X is a bounded bilinear map where X is a separable Banach space then

trK(Λ) :=
∑
j

Λ(ej , ej) ∈ X, (1.5)

where (ej)j is an ONB basis of K is well defined. In other words the series on the RHS
of equality (1.5) is absolutely convergent, its sum is independent of choice of the ONB
(ej)j and the map L(E,E;X) 3 Λ 7→ trK(Λ) is linear and bounded. In particular, if
G : X → L(E,X) is of C1-class, then for every a ∈ X , G′(a)G(a) ∈ L(E,L(E,H)) ∼=
L(E,E;X) and so trK[G′(a)G(a)] ∈ X is well defined.

For the deterministic version of our problem one can consult the fundamental works by
Eells-Sampson24 and Hamilton.37

Contrary to the case of a wave equation the solutions to the stochastic heat flow equation
can only be defined using an external formulation. However, we hope to be able to find an
appropriate definition of an intrinsic solution.

What concerns the initial data ξ we make the following assumption.

Assumption 1.2.2. The initial data ξ is an F0-measurable random variable with values in
H1(S1,M).

Remark 1.2. As is,10 see the end of the proof of Theorem 1.1 on page 133. it is sufficient
to assume that ξ is such that for some p > 2,

E|ξ|p
H1(S1,Rd) <∞. (1.6)

Definition 1.1. A process u : R+×S1×Ω→M is called an extrinsic solution to equation
(1.1) if and only if the following five conditions are satisfied

(i) u(t, x, ·) is (Ft)-progressively measurable for every x ∈ S1,
(ii) u(·, ·, ω) belongs to C(R+ × S1;M) for every ω ∈ Ω,
(iii) R+ 3 t 7→ u(t, ·, ω) ∈ H1(S1,M) is continuous for every ω ∈ Ω,
(vii) for all t ≥ 0 the following equality holds in H−1(S1,Rd), P almost surely,

u(t) = u(0) +

∫ t

0

[
∂xxu(s)− Su(s)(∂xu(s), ∂xu(s))

]
ds

+

∫ t

0

Yu(s) ◦ dW (s). (1.7)
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Moreover, if Assumption 1.2.2 is satisfied, then process u : R+×S1×Ω→M is called an
extrinsic solution of problem (1.1)-(1.2) if and only if u is an extrinsic solution to equation
(1.1) and

(v) u(0, x, ω) = ξ(x, ω) for every x ∈ S1, P-a.s.

Finally, u is called a regular extrinsic solution if in addition the following two conditions
are satisfied

(viii) E
∫ T
0
|u(t)|2H2(S1,Rd) dt <∞ for each T > 0,

(ix) and for all t ≥ 0 the equality (1.7) holds in L2(S1,Rd), P almost surely.

Remark 1.3. Since a function ξ : Ω→ C(S1;M) is F-measurable if and only if for every
x ∈ S1 the function ix ◦ ξ → M is F-measurable, in view of the Kuratowski Theorem,
Assumption 1.2.2 is equivalent to the following one.
The initial data ξ is a function taking values in H1(S1,M) such that for every x ∈ S1 the
function ix ◦ ξ →M is a F0-measurable.
In a similar vein, condition (i) in Definition 1.1 can be replaced by the following one

(i′) Ω 3 ω 7→ u(t, ·, ω) ∈ H1(S1,M) is Ft-measurable for every every t ≥ 0.

Remark 1.4. Let us observe that the following is an informal version of equation (1.7)

∂tu = ∂xxu− Su(ux, ux) + Yu ◦ Ẇ . (1.8)

Both equations can also be formulated in the following mild form.

u(t) = e−tAξ −
∫ t

0

e−(t−s)ASu(ux, ux) ds+

∫ t

0

e−(t−s)AYu ◦ dW (s), t ≥ 0. (1.9)

Next we formulate the main result of this part of the paper.

Theorem 1.1. Let us denote by M a vector bundle over M whose fiber at m ∈M is equal
to L(Rn;TmM), where m is a fixed natural number. Assume that Y is a C1 class section
of the vector bundle M. Then there exists an F-adapted process u =

(
u(t)

)
t≥0 such that u

is a regular extrinsic solution to problem (1.1-1.2).
Moreover, suppose that u =

(
u(t)

)
t≥0 and ū =

(
ū(t)

)
t≥0 are two F-adapted pro-

cesses such that for some T > 0, they are extrinsic solutions to problem (1.1-1.2). Then
ū(t, x, ω) = u(t, x, ω) for all x ∈ S1 and t ∈ [0, T ), P-almost surely.

In the following generalization of the Itô Lemma, see [11, Lemma 6.5] we denote by
T2(K, H) the Hilbert space of Hilbert-Schmidt operators acting between separable Hilbert
spaces K and H .

Lemma 1.1. Let K and H be separable Hilbert spaces, and let f and g be progressively
measurable processes with values in H and T2(K, H) respectively, such that∫ T

0

{
|f(s)|H + ‖g(s)‖2T2(K,H)

}
ds <∞ almost surely.
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For some H-valued F0-measurable random variable ξ define a process u by

u(t) = e−tAξ +

∫ t

0

e−(t−s)Af(s) ds+

∫ t

0

e−(t−s)Ag(s) dW (s), t ∈ [0, T ],

where W is a cylindrical Wiener process on K, and (e−tA)t≥0 is a C0-semigroup on H
with an infinitesimal generator −A. Let V be another separable Hilbert space and let
(e−tB)t≥0 be a C0-semigroup on V with an infinitesimal generator −B. Suppose that
Q : H → V is a C2-smooth function such that Q[D(A)] ⊆ D(B) and there exists a
continuous function F : H → V such that

−Q′(u)Au = −BQ(u) + F (u), u ∈ D(A). (1.10)

Then, for all t ≥ 0,

Q(u(t)) = e−tBQ(ξ) +

∫ t

0

e−(t−s)BQ′(u(s))g(s) dW (s)

+

∫ t

0

e−(t−s)B
[
Q′(u(s))f(s) + F (u(s)) +

1

2
trKQ

′′(u(s)) ◦ (g(s), g(s))
]
ds.

1.3. Proof of Theorem 1.1

The basic idea of the proof of the main result comes from37 and.4 The nonlinearities S
and Y in equation (1.8) are extended from their domains (products of tangent bundles) to
the ambient space, and thus we obtain a classical SPDE in Euclidean space for which the
existence of global solutions is known. However our proof of the existence of the manifold
valued solutions requires, that from the many extensions that can be constructed, we choose
those which satisfy certain “symmetry” properties.

1.3.1. Differential Geometry preliminaries

Let us denote by TM and NM the tangent and the normal bundle respectively, and denote
by E the exponential function TRd 3 (p, ξ) 7→ p + ξ ∈ Rd relative to the Riemannian
manifold Rd equipped with the standard Euclidean metric. The following result about
tubular neighbourhood of M can be found in,57 see Proposition 7.26, p. 200.

Proposition 1.1. There exists an Rd-open neighbourhood O of M and an NM -open
neighbourhood V around the set {(p, 0) ∈ NM : p ∈ M} such that the restriction of
the exponential map E|V : V → O is a diffeomorphism. Moreover, V can be chosen in
such a way that (p, tξ) ∈ V whenever t ∈ [−1, 1] and (p, ξ) ∈ V .

Remark 1.5. In what follows, we will denote the diffeomorphism E|V : V → O by E ,
unless there is a danger of ambiguity.
Denote by i : NM → NM the diffeomorphism (p, ξ) 7→ (p,−ξ) and define

h = E ◦ i ◦ E−1 : O → O. (1.11)
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The function h defined above is an involution on the normal neighbourhood O of M and
corresponds to multiplication by −1 in the fibers, having precisely M for its fixed point
set. The identification of the manifold M as a fixed point set of a smooth function enables
to prove that solutions of heat equations with initial values on the manifold remain thereon,
see37 for deterministic heat equations in manifolds and4 for stochastic heat equations in
manifolds. Employing a partition of unity argument we may assume that h : Rd → Rd
is such that properties (1)-(5) of Corollary 1.1 are valid on O. Therefore, without loss of
generality we may assume that the function h is defined on the whole Rd.

Corollary 1.1. The function h has the following properties: (i) h : O → O is a diffeomor-
phism, (ii) h(h(q)) = q for every q ∈ O, (iii) if q ∈ O, then h(q) = q if and only if q ∈M ,
(iv) if p ∈M , then h′(p)ξ = ξ, provided ξ ∈ TpM and h′(p)ξ = −ξ, provided ξ ∈ NpM .

Next we define, for q ∈ Rd and a, b ∈ Rd,

Bq(a, b) = d2qh(a, b), Sq(a, b) =
1

2
Bh(q)(h

′(q)a, h′(q)b). (1.12)

Let us recall that the second fundamental tensor S was introduced before the formula
(1.4). We will be studying problem (1.7) with S replaced by S. The following result which
is essential for our paper is taken from [12, Proposition 4.2].

Proposition 1.2. If p ∈M and q ∈ O, then

Sp(ξ, η) =
1

2
Bp(a, b) = Sp(ξ, η), ξ, η ∈ TpM, (1.13)

Sh(q)(h′(q)a, h′(q)b) = h′(q)Sq(a, b) +Bq(a, b), a, b ∈ Rd. (1.14)

Let us formulate and prove the following result which shows importance of Proposition
(1.2).

Corollary 1.2. Let us put

∆(u) = uxx − Su(ux, ux), u ∈ H2(S1,Rd). (1.15)

Then,

∆(h ◦ u) = h′(u)∆(u), u ∈ H2(S1,Rd). (1.16)

Proof. Assume that u ∈ C2(S1,Rd) and put v = h ◦ u. Then,

∆(v) = [h ◦ u]xx − Sh◦u((h ◦ u)x, h ◦ u)x)

= h′(u)uxx + h′′(u)(ux, ux)− Sh(u)(h′(u)ux, h
′(u)ux)

= h′(u)uxx − h′(u)Su(ux, ux) = h′(u)∆(u),

where the second line above follows from (1.14). �
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To this end, let πp, p ∈M be the orthogonal projection of Rd to TpM and let us define
vij(p) = Sp(πpei, πpej) for i, j ∈ {1, . . . , n} and extend the functions vij = vji smoothly
to the whole Rd.

Now we will shortly recall the construction of extensions of vector fields onM to vector
fields on O from,37 cf.15 To this end, let us define a new Riemannian metric g on O by

gq(a, b) = 〈a, b〉Rd + 〈h′(q)a, h′(q)b〉Rd , q ∈ O, a, b ∈ Rd. (1.17)

Remark 1.6. h : (O, g)→ (O, g) is an isometric diffeomorphism.

If q ∈ O then, by Proposition 1.1, there exists a unique (p, ξ) ∈ V such that q =

E(p, ξ). We will write p(q) = p for this dependence. Moreover, also by Proposition 1.1,
E(p, tξ) ∈ O for t ∈ [0, 1]. Hence we can define the curve γq : [0, 1] 3 t 7→ E(p, tξ) ∈ O.
If a ∈ Rd and (X(t))t∈[0,1], X(0) = a is the parallel translation of a along γq in (O, g)

then we denote by Pqa the endpoint vector X(1).

Proposition 1.3. [11, Proposition 3.9] P : O → Lisom(Rd,Rd) is a smooth function.
Moreover, Pq = I for q ∈M and

h′(q)Pq = Ph(q)h
′(p(q)), q ∈ O.

Due to this setting, it is possible to extend conveniently various mappings defined on
the manifoldM to its neighbourhoodO, c.f.15 For example, ifX is a vector field onM , i.e.
a section of the tangent bundle, then we can define a map X : O → Rd by the following
formula

Xq = PqXp(q), q ∈ O. (1.18)

1.3.2. Existence of solutions to approximating equations

Note that the tangent bundle TRd is isomorphic to Rd × Rd. Using formula (1.18) and
Proposition 1.3 we can find a C1-class map Y : Rd → L(Rn,Rd) that such

Ym = Ym : Rn → TmM, m ∈M, (1.19)

where we identify TmM with the corresponding subspace of Rd, and

Yh(q) = h′(q) ◦ Yq, q ∈ O. (1.20)

Note that both sides of (1.20) belong to L(Rn,Rd).
Let us fix T > 0. In what follows we put H1 = H1(S1,Rd), L1 = L1(S1,Rd) etc. We

will also denote by H1(S1,M) the Hilbert manifold consisting of those γ ∈ H1(S1,Rd)
which satisfy γ(x) ∈M for all x ∈ S1.

Let us recall that E is a Banach space from Assumption 1.2.1.
We define maps F : H1 → L1, G : H1 → L(E,H1) and Q : H1 → H1 by the

following formulae,
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[F(u)](x) = −Su(x)(ux(x), ux(x)), u ∈ H1, x ∈ S1,(
G(u)ξ

)
(x) = Yu(x)(ξ(x)), u ∈ H1, ξ ∈ E, x ∈ S1,

Q(u) = h ◦ u, u ∈ H1.

We begin with the following result which follows directly from Corollary 1.1 parts (3)
and (4) and the definitions of the function Q.

Lemma 1.2. If u ∈ H1(S1,M), then Q(u) = u. Conversely, if u ∈ H1(S1,Rd) is such
that for all x ∈ S1 u(x) ∈ O and Q(u) = u, then u ∈ H1(S1,M).

Let πn be the projection from H1 onto the ball B(0, n) ⊂ H1 defined by

πn(v) =

{
v, if |v|H1 ≤ n,
n
|v|H1

v, if |v|H1 > n.
(1.21)

It is well known, see for instance [5, Lemma 2.3], that the map πn : H1(0, 1)→ H1(0, 1)

is globally Lipschitz with Lipschitz constant 1. Moreover,

|(Dx(πnu))2 − (Dx(πnv))2|L1 ≤ 2n|u− v|H1 , for all u, v ∈ H1, (1.22)

|(πnu)2|L1 ≤
[
n ∧ |u|H1

]
|u|H1 , for all u ∈ H1.

Next we define maps Fn : H1 → L2 and Gn : H1 → L(E,H1) by analogous
formulae

Fn(u) = −Su((πn ◦ u)x, (πn ◦ u)x), u ∈ H1,

Gn(u) = G(πnu), u ∈ H1.

Note that Fn = F and Gn = G on on the ballB(0, n) inH1. Moreover, since the function
G is Lipschitz continuous on the ball B(0, n) in H1, it follows, see for instance the proof
of [3, Corollary 3] that Gn : H1 → H1 is globally Lipschitz. Finally, the Lipschitz
continuity and boundedness of the map Fk : H1 → L1 can be derived as in.5 Thus have
the following result.

Lemma 1.3. The functions F : H1 → L1 and G : H1 → L(E,H1) are Lipschitz contin-
uous on balls, the function G is of C1-class and the the function

trK(G′ ~G) : H1 3 u 7→ trK(G′(u)G(u)) ∈ H1

is Lipschitz continuous on balls. For each k ∈ N, the functions Fk : H1 → L1, Gk :

H1 → L(E,H1) and trK(G′k ~Gk) : H1 → H1 are globally Lipschitz continuous, i.e.
there exists a constant Ck such that for all u, v ∈ H1

|Fk(u)− Fk(v)|L1 + |Gk(u)−Gk(v)|L(E,H1)

+ |trK(G′k(u)Gk(u))− trK(G′k(v)Gk(v))|H1 ≤ Ck|u− v|H1 .(1.23)
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We will also need the following result which is related to the proofs of Lemmae 2.11 and
2.12 in.5

Lemma 1.4. Let
(
e−tA

)
t≥0 be the heat semigroup on the scale of Banach spaces

Lp(S1,Rd), p ∈ [1,∞). Then for each α ≥ 0, there exists a constant C = Cα > 0

such that

‖e−tA‖L(L1,Hα,2) ≤ Ct−
1
4−

α
2 , t > 0. (1.24)

In particular, for each for each T > 0 and α ∈ [0, 32 ) and for any bounded and strongly-
measurable function v : (0, t)→ L1(0, 1) the following inequality holds

sup
t∈[0,T ]

|
∫ t

0

|e−(t−s)Av(s) ds|Hα,2 ≤ CαT
3
4−

α
2 sup
t∈[0,T ]

|v(t)|L1 . (1.25)

The following result can be proved by using Lemma 1.3 and employing similar methods
as used in the proof of Theorem 2.14 in.5 One should point out here that this result is
different from more standard existence results as those for instance in Theorem 4.3 in.2

Proposition 1.4. Let us fix p > 2. Let the initial data ξ from Assumptions 1.2.2 satisfy in
addition condition (1.6).

Then there exists a unique H1-valued continuous process uk satisfying

E sup
t∈[0,T ]

|uk(s)|pH1 <∞ (1.26)

and such that for all t ∈ [0, T ], P-a.s.

uk(t) = e−tAξ +

∫ t

0

e−(t−s)AFk(uk(s)) d s+

∫ t

0

e−(t−s)AGk(uk(s)) dW (s)

+

∫ t

0

e−(t−s)AtrK[G′k ~Gk](uk(s)) d s. (1.27)

Moreover,

E
∫ T

0

|uk(s)|2H2 ds <∞. (1.28)

Proof. [Proof of Proposition 1.4] As mentioned above the proof of the first part follows
the ideas from the proof of Theorem 2.14 in.5 The proof of the second part uses ideas
from.9 Since ξ ∈ Lp(Ω, H1) ⊂ L2(Ω, H1) and H1 = Dom(A1/2) = (D(A), L2)1/2,2,
by invoking48 we infer that the 1st term on the RHS of (1.27) satisfies the condition (1.28).
Because uk satisfies the condition (1.26) in view of the Lipschitz condition (1.23) satisfied
by Gk and trK(G′k ~ Gk), both the 3rd and the 4th terms on the RHS of (1.27) satisfy
the condition (1.28). The only difficulty lies with the 2nd term because so far we only
know that for each t > 0, Fk(uk(t)) belongs to L1. By48 again, it is enough to show that
E
∫ T
0
|Fk(uk(s))|2L2 ds <∞. In view of the definition of Fk, it is enough to show that

E
∫ T

0

|(uk)x(s)|4L4 ds <∞. (1.29)
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Obviously, it is enough to show that each term on the RHS of (1.27) satisfies the above
condition (1.29). To this end it is sufficient to verify the following two claims.
Claim 1. If v ∈ L2(0, T ;H1) ∩ L∞(0, T ;L2) then v ∈ L4(0, T ;L4) and there exists a
constant C > 0 such that∫ T

0

|v(s)|4L4 ds ≤ CT 1/2 sup
t∈[0,T ]

|v(t)|2L2

( ∫ T

0

|v(s)|2L2

)1/2
.

Claim 2. If α > 5
4 , then there exists a constant C > 0 such that for all v∫ T

0

|vx(s)|4L4 ds ≤ C sup
t∈[0,T ]

|v(t)|4Hα .

Claim 1 follows from a special case of the Gagliardo-Nirenberg inequality |v|4L4 ≤
C|v|3L2 |vx|L2 . Claim 2 follows from a special case of the Sobolev embedding (valid for
β > 1

4 ) that

|v|L4 ≤ C|v|Hβ .

Therefore, the proof of Proposition 1.4 is completed by applying Claim 2 to the 2nd term
on the RHS of (1.27) and Claim 1 to all three remaining terms. �

We will apply Lemma 1.1 to the process uk and the function Q. We have the following
result.

Lemma 1.5. The map Q : H1 → H1 is of C2-class and, with u, v, z ∈ H1, it satisfies

Q′(u)v = h′(u)v, Q′′(u)(v, z) = h′′(u)(v, z),

Q′(u)[−Au] = −AQ(u) + L(u), u ∈ H2, (1.30)

Q′(u)[G(u)] = [G ◦Q](u), u ∈ H1(S1, O), (1.31)

where, with the map B being defined in (1.12), the function L : H2 → L2 is defined by

L(u) = Bu(ux, ux).

Proof. Identity (1.30) can be proved in the same way as identity (1.16). Identity (1.31)
is a consequence of the invariance property (1.20). Indeed, if ξ ∈ E, then

Q′(u)[G(u)ξ] = h′(u)Yuξ = Yh(u)ξ

= G(h(u))(ξ) = (G(Q(u))(ξ).
�

Define now the following two auxiliary functions

F̃k : H1 3 u 7→ Q′(u)
(
Fk(u)

)
− L(u) = h′(u)(Fk(u))−Bu(ux, ux) ∈ L1,(1.32)

G̃k : H1 3 u 7→ Q′(u) ◦Gk(u) = h′(u)(Gk(u)) ∈ L(E,H1). (1.33)

This leads to the following result that rigorously expresses the fact that F̃k, resp. G̃k is the
push forward by Q of Fk, resp. Gk.
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Proposition 1.5. The following identities hold.

F̃k(u) = Fk(Q(u)), G̃k(u) = Gk(Q(u)), u ∈ H1, (1.34)

G̃′k(u)G̃k(u) = G′k(Q(u))Gk(Q(u)), u ∈ H1(S1, O). (1.35)

Proof. [Proof of Proposition 1.5] It is enough to prove the identities for the original
operators, i.e. without the subscript k.

We begin with the second identity in (1.34). By the invariance property (1.20) of the
function Y and the identities (1.31) and (1.33) we have,

[G(Q(u))](ξ) = YQ(u)(·)ξ(·) = Yh(u(·))ξ(·)

= h′(u(·))Yu(·)ξ(·) = [h′(u)G(u)](ξ) = [G̃(u)](ξ).

To prove the first part of (1.34) we can argue as in the proof of identity (1.16).
Identity (1.35) is a consequence of identity (1.31). �

Let us also observe that it follows from Lemma 1.5 that the assumptions of Lemma
1.1 are satisfied with the linear operator B being equal to A. Thus we have the following
fundamental result.

Corollary 1.3. Let uk be the solution to (1.27) as in Proposition 1.4 and a process ũk be
defined by the following formula

ũk = Q ◦ uk. (1.36)

Then for all t ∈ [0, T ], P-a.s.,

ũk(t) = e−tAQ(ξ) +

∫ t

0

e−(t−s)AF̃k(uk(s)) ds+

∫ t

0

e−(t−s)AG̃k(uk(s)) dW (s)

+

∫ t

0

e−(t−s)AtrK[G̃′k(uk(s))G̃k(uk(s))] d s. (1.37)

1.3.3. Construction of a maximal local solution

In the first part of this subsection we will show that the approximate solutions stay on the
manifold M . This will follow from Corollary 1.3. As usual, we begin with some notation.

Let for each k ∈ N, et uk be the solution to problem (1.27). Let us define the following
four [0,∞]-valued functions on Ω.

τ1k = inf {t ∈ [0, T ] : |uk(t)|H1 > k},
τ2k = inf {t ∈ [0, T ] : |ũk(t)|H1 > k},
τ3k = inf {t ∈ [0, T ] : ∃x ∈ S1 : uk(t, x) /∈ O},
τk = τ1k ∧ τ2k ∧ τ3k .

The following result is borrowed from,12 see Lemma 5.4.

Lemma 1.6. Each function τ jk , j = 1, 2, 3, k ∈ N, is a stopping time.
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Proposition 1.6. The process uk and ũk coincide on [0, τk) almost surely. In particular,
uk(t, x) ∈M for x ∈ S1 and t ≤ τk almost surely. Consequently,

τk = τ1k = τ2k ≤ τ3k .

Proof.

By Proposition 1.5 we infer that for all s ∈ [0, T ], x ∈ S1, P-a.s.

1[0,τk)(s)[F̃k(uk(s))](x) = 1[0,τk)(s)[Fk(ũk(s))](x),

1[0,τk)(s)[G̃k(uk(s))e](x) = 1[0,τk)(s)[Gk(ũk(s))e](x), e ∈ K,

1[0,τk)(s)trK[G̃′k ~ G̃k](uk(s)) = 1[0,τk)(s)trK[G′k ~Gk](ũk(s)).

Let us denote

p(t) = |uk(t)− ũk(t)|2L2 , t ∈ [0, T ]. (1.38)

Then the process p stopped at τk is continuous and uniformly bounded. Note that since
ξ = Q(ξ), we infer that p(0) = 0. Moreover, by the Itô Lemma from58 and Lemma 1.3,
we can find a continuous martingale I with I(0) = 0 such that for all k ∈ N,

p(t ∧ τk) ≤
∫ t

0

1[0,τk)(s)|Fk(uk(s))− Fk(ũk(s))|2H−1 ds

+

∫ t

0

1[0,τk)(s)|G
′
k(uk(s))Gk(uk(s))−G′k(uk(s))Gk(ũk(s))|2L2 ds

+

∫ t

0

1[0,τk)(s)|Gk(uk(s))−Gk(ũk(s))|2T2(K,L2) ds+ I(t ∧ τk)

≤ 3C

∫ t

0

1[0,τk)(s)|uk(s)− ũk(s)|2H1 ds+ I(t ∧ τk)

≤ 3C

∫ t

0

p(s ∧ τk) ds+ I(t ∧ τk), t ∈ [0, T ].

Therefore, by taking the expectation and then applying the the Gronwall lemma, we
infer that p = 0 on [0, τk] almost surely. In other words, P almost surely, uk = ũk on
[0, τk]. Consequently, P-a.s. uk(t, x) ∈ O and uk(t, x) = h(uk(t, x)) for x ∈ S1 and
t ≤ τk. Hence, by Corollary 1.1 (or Lemma 1.2), P-a.s. uk(t, x) ∈ M for x ∈ S1 and
t ∈ [0, τk] . Therefore, τk ≤ τ3k and so τk = τ1k ∧ τ2k . Finally, since p = 0 on [0, τk] we
infer that τ1k = τ2k . �

Remark 1.7. Although the process uk − ũk is H1-valued, there is no error in considering
the L2 norm of it (and not the H1 norm) in order to prove that this process is equal to
a 0 process. Moreover, we had to use the framework of Pardoux for the Gelfand triple
H1 ⊂ L2 ⊂ H−1 (and not the H2 ⊂ H1 ⊂ L2 one) because we had to use the Lipschitz
property of Fk. We have implicitly used an embedding L1 ⊂ H−1.

The same comments apply to the proof of Proposition 1.7 below.
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In the second part of this subsection we will show that the approximate solutions extend
each other. To be precise we will prove the following result.

Proposition 1.7. Let k ∈ N. Then uk+1(t, x, ω) = uk(t, x, ω) on x ∈ S1, t ≤ τk(ω), and
τk(ω) ≤ τk+1(ω) almost surely.

Proof. Define a process p as before by formula (1.38). As in the proof of Proposition
1.6, we apply the Itô Lemma from.58 Since p(0) = 0 we can find continuous martingale I
satisfying I(0) = 0 such that for all t ∈ [0, T ], P-a.s.

p(t ∧ σk) ≤
∫ t

0

1[0,σk)(s)|Fk+1(uk+1(s))− Fk(uk(s))|2L2 ds

+

∫ t

0

1[0,σk)(s)|1[0,τk+1)trK[G′k+1 ~Gk+1(uk+1(s))]

− trK[G′k ~Gk(uk(s))]|2L2 ds

+

∫ t

0

1[0,σk)(s)|Gk+1(uk+1(s))−Gk(uk(s))|2T2(K,L2) ds+ I(t ∧ σk),

where σk := τk ∧ τk+1. Since for s ∈ [0, σk), Fk(uk(s)) = F(uk(s)) = Fk+1(uk+1(s))

and similarly, Gk(uk(s)) = G(uk(s)) = Gk+1(uk+1(s)), by the Lipschitz continuity of
the functions Fk+1, Fk+1 and G′k+1 ~Gk+1 we infer that for some constant C > 0,

p(t ∧ σk) ≤ C

∫ t

0

1[0,σk)(s)p(s) ds+ I(t ∧ σk) = C

∫ t∧σk

0

p(s ∧ σk) ds.

Hence by the Gronwall Lemma we infer that p = 0 on [0, σk]. This implies that τk,
τk ≤ τk+1. Indeed, if |ξ|H1 > k + 1 then τk+1 = τk = 0 and if if k < |ξ|H1 ≤ k + 1 then
τk+1 > 0 and τk = 0. Thus, one can assume that |ξ|H1 ≤ k. If τk+1 were smaller than τk
then by the just proved property we would have uk(t) = uk+1(t) for t ∈ [0, τk+1]. Hence
|uk(0)|H1 ≤ k and |uk(τk+1)|H1 ≥ k + 1 and therefore we can find t̄ ∈ [0, τk+1) such
that |uk(t̄)|H1 = k + 1

2 . This implies that τk ≤ t̄ and this contradicts the assumption that
τk+1 < τk. The proof is complete. �

By Proposition 1.7 the sequence (τk)∞k=1 of stopping times is non-decreasing and so the
limit of (τk) exists. We denote it by τ , i.e. τ = limk→∞ τk . Moreover, we can define a
process ũ(t, x), t ∈ [0, τ), x ∈ S1 by ũ(t, x, ω) = uk(t, x, ω) provided k is so large that
t ∈ [0, τk(ω)). Note that ũ(t, ·) ∈ H1.

In the following subsection we will show that τ = T P almost surely.

1.3.4. No explosion for approximate solutions

In this final subsection we will show that the maximal local solution constructed in the
previous subsection is a global solution. We begin with proving that the local maximal
solution is a global one.

Proposition 1.8. τ = T almost surely.
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Proof. We first notice that we have, for t ∈ [0, T ],

uk(t) = ξ −
∫ t

0

Auk(s) ds+

∫ t

0

Fk(uk(s)) ds+

∫ t

0

[G′k ~Gk(uk(s))] ds

+

∫ t

0

Gk(uk(s)) dW (s). (1.39)

By applying the Itô Lemma from58 and Lemma 1.3 we can find a continuous local
martingale J0 such that for t ∈ [0, T ], P-a.s.,

1

2
|∇uk(t)|2 +

∫ t

0

1[0,τk)(s)〈Auk(s), Auk(s)〉 ds =
1

2
|∇ξ|2 + J0(t)

+

∫ t

0

1[0,τk)(s)〈Auk(s),Fkuk(s)〉 ds (1.40)

+

∫ t

0

1[0,τk)(s)〈∇uk(s),∇G′k(uk(s))Gk(uk(s))uk(s)〉 ds,

where the norms and the scalar product are those from the L2 = L2(S1,Rd) space. Note
the following fundamental property. If u ∈ D(A) then, see (1.4),

〈−∆u(x) + F (u(x)), F (u(x))〉 = 0, for a.a. x ∈ S1. (1.41)

Since for s ∈ [0, τk), Fk(uk(s)) = F(uk(s)), in view of identity (1.41), equality (1.40)
can be rewritten as

1

2
|∇uk(t ∧ τk)|2 +

∫ t

0

1[0,τk)(s)|Auk(s)− Fk(uk(s))|2 ds− 1

2
|∇ξ|2 − J0(t)

=

∫ t

0

1[0,τk)(s)〈∇uk(s), trK[∇G′k(uk(s))Gk(uk(s))uk(s)]〉 ds,

≤ C

∫ t

0

1[0,τk)(s)
[
1 + |∇uk(s)|2

]
ds (1.42)

= C

∫ t∧τk

0

[
1 + |∇uk(s ∧ τk)|2

]
ds.

Hence, for each j ∈ N there exists a constant Kj such that with Bj =
{
ω ∈ Ω :

|∇ξ(ω)|2L2 ≤ j
}

, one has, by the Gronwall Lemma,

E 1Bj [1 + |∇uk(t ∧ τk)] ≤ Kj , t ∈ [0, T ], j ∈ N. (1.43)

Let us now fix t ∈ [0, T ). Then, since 1{τk≤t}|uk(τk)|Hr−τk ≥ k1{τk≤t}, we infer that

log(1 + k2)P ({τk ≤ t} ∩Bj) ≤ E 1Bjq(t ∧ τk) ≤ Cr,j . (1.44)

Since τk ↗ τ as k → ∞, from (1.44) we infer that for all t ∈ [0, T ), j ∈ N, P ({τ ≤
t} ∩Bj) = 0 what in turn implies that τ = T almost surely. This completes the proof. �
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1.4. Stochastic geometric wave equations

Keeping the notation from Section 1.2, we let M be a compact Riemannian manifold iso-
metrically embedded in some ambient Euclidean space Rd, we let Sp : TpM × TpM →
NpM be the associated second fundamental form and D is the generic symbol denoting
induced connections on pull-back bundles relative to given mappings. We also use Hk

loc to
denote the local Sobolev spacesW k,2

loc (Rm;Rd) and we assume that every filtration (Ft) on
a probability space (Ω,F ,P) is such that F0 contains all P-negligible sets in F . Finally,
we use the short notation uy to denote the partial derivatives ∂yu = ∂u

∂y .

1.4.1. Deterministic theory

The geometric wave equation has an intrinsic form (i.e. independent of the ambient space)

Dtut =
m∑
j=1

Dxjuxj (1.45)

or, equivalently, in local coordinates

uitt−∆ui =
dimM∑
l=1

dimM∑
k=1

Γilk(u)(−ultukt +
m∑
j=1

ulxju
k
xj ), i ∈ {1, . . . ,dimM} (1.46)

where {Γilk} are the Christoffel symbols, or, equivalently, an extrinsic form (i.e. dependent
on the ambient space)

utt = ∆u+ Su(ut, ut)−
m∑
j=1

Su(uxj , uxj ) (1.47)

where u : R × Rm → M is a differentiable mapping. To get a better insight, we mention
that the equations (1.45) - (1.47) are equivalent to

Pu(utt −∆u) = 0

where Pp : Rd → TpM is the orthogonal projection of Rd onto the tangent space of M at
a point p ∈ M - that is, the geometric wave equation is just the “projected” classical wave
equation. Finally, we may also interpret geometric wave equations as the Euler-Lagrange
equations for the Lagrangian∫

R×Rm

−|ut|2TuM +
m∑
j=1

|uxj |2TuM

 dt dx.

Example 1.1. If M is a unit sphere in a Euclidean space of dimension greater or equal 2

with the Riemannian structure inherited from the ambient space then the second fundamen-
tal form satisfies Sp(ξ, ν) = −〈ξ, ν〉p for ξ, ν ∈ TpM , p ∈M and the equation (1.47) has
the form

utt = ∆u+ (|∇u|2 − |ut|2)u, |u| = 1.
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Geometric wave equations arise in many fields of the modern theoretical physics - for
instance, in the analysis of the more difficult hyperbolic Yang-Mills equations either as a
special case or as an equation for certain families of gauge transformations, and also in
general relativity for spacetimes with two Killing vector fields.

1.4.2. Historical remarks

The reader is kindly referred to nice surveys in63 and65 for various aspects of these
equations, from which we select just a few results concerning existence and uniqueness.
Namely, it is known that (1.45) has a unique global (strong) solution in H2

loc × H1
loc on

the Minkowski space R1+1, i.e. if the space dimension m = 1 by,34,3646 and62 for every
compact Riemannian manofld M . This result was further extended by67 and63 to cover
initial conditions from H1

loc × L2
loc on the Minkowski space R1+1, thus obtaining exis-

tence of unique weak solutions in H1
loc × L2

loc if m = 1. Climbing the ladder further,
the tence of weak solutions in H1

loc × L2
loc was proved in the Minkowski space R1+2 for

general target manifolds in,51 leaving the problem of uniqueness open. In higher spatial
dimensions m ≥ 3 solutions may blow up or be non-unique even for smooth initial data
and for a large class of target manifolds including convex manifolds or manifolds with
negative sectional curvature, as shown e.g. in16 and.62 On the other hand, there is still a
plenty of positive existence results in higher dimensions when additional assumptions are
imposed, see e.g.18,20,45,64 and especially the work28 which yields the existence of global
weak H1

loc × L2
loc-valued solutions on any Minkowski space R1+m provided the target

manifold is a compact Riemannian homogeneous space (for instance the unit sphere).

1.4.3. Objectives

The aim of this part of the paper is to survey the recent achievements in the field of stochas-
tic geometric wave equations and explain their principles. It should be noted that this area
is ints infancy and few results are available so far.

1.5. Spatially homogeneous Wiener process

Random perturbations of wave equations in flat spaces have been predominantly modelled
by spatially homogeneous Wiener processes for various physically motivated reasons (see
e.g.60) that, in our opinion, remain valid for stochastic geometric wave equations, and that
is why we consider them here as well. These perturbations correspond to centered Gaussian
random fields (W(t, x) : t ≥ 0, x ∈ Rd) satisfying

EW(t, x)W(s, y) = (t ∧ s)Γ(x− y), t, s ≥ 0, x, y ∈ Rm (1.48)

for some function or even a distribution Γ called the spatial correlation ofW .
Following60 (which we recommend as a useful survey of properties and examples of

spatially homogeneous Wiener processes) let µ be a finite symmetric measure on Rm, that
we will call a spectral measure, and let (Ω,F , (Ft),P) be a stochastic basis. A spatially
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homogeneous Wiener process with spectral measure µmay be introduced in two equivalent
ways. The first one is to think of a centered Gaussian process (W(t, x) : t ≥ 0, x ∈ Rm)

such that (W(t, x) : t ≥ 0) is an (Ft)-Wiener process for every x ∈ Rm and (1.48) holds
for Γ : Rm → R which is the Fourier transform of (2π)−

1
2µ. Another way is to consider

an (Ft)-Wiener process in the space of tempered distributions on Rm satisfying

E {〈W (s), ϕ0〉〈W (t), ϕ1〉} = min {s, t}〈ϕ̂0, ϕ̂1〉L2(µ), t, s ≥ 0, ϕ0, ϕ1 ∈ SR,

where SR is the real Schwartz space of smooth rapidly decreasing real functions on Rm.
The equivalence betweenW and W is given by the formula (see e.g. page 190 in60)

〈W (t), ϕ〉 =

∫
R
W(t, x)ϕ(x) dx, t ≥ 0, ϕ ∈ SR.

The following proposition describes the reproducing kernel Hilbert space (RKHS) of a
spatially homogeneous Wiener process and some of its properties (see Proposition 1.2 in60

and Lemma 1 in53).

Proposition 1.9. Let W be a spatially homogeneous Wiener process with a finite spectral
measure µ. Then the reproducing kernel Hilbert space of W (denoted by Hµ) is described
as

Hµ = {ψ̂µ : ψ ∈ L2
C(Rm, µ), ψ(x) = ψ(−x)}, 〈ψ̂0µ, ψ̂1µ〉Hµ = 〈ψ0, ψ1〉L2(µ),

Hµ is continuously embedded in the space of real continuous bounded functions on Rm
and

‖ξ 7→ hξ‖T2(Hµ,L2(Rm)) = c‖h‖L2(Rm), h ∈ L2
R(Rm) (1.49)

holds for c = c[µ(Rm)]
1
2 where c ∈ R+ is a constant.

Corollary 1.4. A spatially homogeneous (Ft)-Wiener process W with a finite spectral
measure µ is a cylindrical (Ft)-Wiener process on Hµ. Thus, if K is a Hilbert space
and ψ an (Ft)-progressively measurable process with paths in L2

loc(R+; T2(Hµ,K)) a.s.
then the stochastic integral

∫ ·
0
ψ dW is understood in the classical sense as a K-valued

continuous local (Ft)-martingale (see e.g.22).

1.6. Intrinsic and extrinsic solutions

1.6.1. Posing the problem

Let us observe that equation (1.45) is assumed to hold in Tu(t,x)M for every (t, x) ∈ R1+m.
Thus, any first order stochastic Itô perturbation of (1.45) by a spatially homogeneous
Wiener process W acting by multiplication of some diffusion Y must have the form

Dtut =
m∑
j=1

Dxjuxj + Yu(ut,∇u) dW (1.50)

where Yp : (TpM)m+1 → TpM is given. Contrary to the deterministic equation (1.45),
where one can express its terms in local coordinates, the stochastic equation (1.50) is purely
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formal and two natural rigorous definitions of its solution were proposed in.11 In general,
minimal requirements upon a reasonable solution lead us to look for

(Sol) a progressively measurable process u : R+ × Rm × Ω → M with (H1
loc, τweak)-

continuous paths continuously differentiable in (L2
loc, τweak).

At this point, there are two possibilities to give a meaning to equation (1.50):

1.6.2. Extrinsic form

First possibility is to consider an extrinsic equation by which we mean the stochastic
partial differential equation

utt = ∆u+ Su(ut, ut)−
m∑
j=1

Su(uxj , uxj ) + Yu(ut,∇u) dW (1.51)

in the ambient space Rd in the classical sense, i.e. when the equation

〈ut(t), ϕ〉 = 〈ut(0), ϕ〉+

∫ t

0

〈u(s),∆ϕ〉 ds+

∫ t

0

〈Yu(ut,∇u) dW,ϕ〉 (1.52)

+

∫ t

0

〈Su(s)(ut(s), ut(s))−
m∑
j=1

Su(s)(uxj (s), uxj (s)), ϕ〉 ds

holds almost surely for every t ∈ R+ and every smooth compactly supported ϕ : Rm →
Rd, assuming implicitly convergence of the integrals in (1.52).

Remark 1.8. The adjective “extrinsic” is related to the presence of the second fundamen-
tal form S in the equation (1.52) which is a geometrically extrinsic object.

1.6.3. Intrinsic form

The second possibility is to consider an intrinsic equation when the equation (1.50) is
formally multiplied by X(u) for every smooth vector field X on M , developing (1.50)
further to the stochastic partial differential equation

d 〈ut, X(u)〉TuM =

m∑
j=1

[
∂xj 〈uxj , X(u)〉TuM − 〈uxj ,∇uxjX〉tuM

]
dt (1.53)

+ 〈ut,∇utX〉TuM dt+ 〈Yu(ut,∇u) dW,X(u)〉TuM ,
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i.e.

〈〈ut(t), X(u(t))〉Tu(t)M , ϕ〉 = 〈〈ut(0), X(u(0))〉Tu(0)M , ϕ〉

+

∫ t

0

〈〈ut(s),∇ut(s)X〉Tu(s)M , ϕ〉 dt

−
∫ t

0

m∑
j=1

〈〈uxj (s), X(u(s))〉Tu(s)M , ϕxj 〉

−
∫ t

0

m∑
j=1

〈〈uxj (s),∇uxj (s)X〉tu(s)M , ϕ〉 ds

+

∫ t

0

〈〈Yu(s)(ut(s),∇u(s)) dW,X(u(s))〉Tu(s)M , ϕ〉. (1.54)

holding almost surely for every t ∈ R+, every smooth vector field X on M and for every
smooth compactly supported ϕ : Rm → Rd, assuming again implicitly convergence of the
integrals in (1.54).

1.6.4. Extrinsic vs. Intrinsic

The proof of the following theorem can be found in11 for strong solutions and in14 for weak
solutions.

Theorem 1.2. Let a process u satisfy the assumption (Sol). Then u is an intrinsic solution
if and only if u is an extrinsic solution.

Remark 1.9. The reader will not be certainly surprised by a revelation that the implication
from extrinsic to intrinsic is based on the Itô formula. The proof of the converse statement
is however somewhat unexpectedly based on purely algebraic arguments.

1.7. Strong solutions inH2
loc ×H1

loc on R1+1

The existence and uniqueness of strong solutions on the Minkowski space R1+1 was estab-
lished already early in the 80s in36 and46 by classical PDE methods based on the fact that
solutions of all wave equations, in particular those of the type (1.46), propagate at finite
speed. This local character of the equation in unbounded Euclidean domains enabled to
work with the equation (1.46) in each patch of the manifold separately and glue the par-
ticular solutions to a unique global solution eventually. Simpler proofs were given later on
in34 and,62 mostly profitting from the extrinsic form of the geometric wave equation (1.47)
avoiding local coordinates. This approach was also used in11 and12 to prove the following
result (after it had been observed that working in local coordinates with equation (1.46) in
the stochastic case was nearly impossible).

Theorem 1.3. Let m = 1, let Y ∈ C1 be such that

|Y (p, ξ, η)|+ |∇pY (p, ξ, η)| ≤ C(1+ |ξ|+ |η|), |∇ξY (p, ξ, η)|+ |∇ηY (p, ξ, η)| ≤ C
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holds for every ξ, η ∈ TpM , p ∈M and let the spectral measure satisfy∫
Rm

(1 + |x|2)µ(dx) <∞. (1.55)

Then existence and uniqueness holds for the equation (1.50) within the class of adapted
processes u such that paths of u belong to C(R+;H2

loc) ∩ C1(R+;H1
loc).

Remark 1.10. Let us observe that the fact that we solve equation (1.50) in the high energy
spaceH2

loc×H1
loc (which is the state space for the pair (u, ut)) requires a stronger assump-

tion on the spectral measure (1.55). In particular, only finer spatially homogeneous noises
are admissible and the constraint (1.55) seems to be inevitable.

Proof. There are mainly two ideas in the proof (presented in detail in11 or12). We are
solving the extrinsic equation (1.51) and we first observe that H2

loc and H1
loc are algebras

(i.e. the multiplication is a continuous operation) embedded in the space of continuous
functions by the Sobolev embedding theorem on one-dimensional domains (that is why
we assumed m = 1). That means that the quadratic non-linearities in (1.51) are “locally
Lipschitz” on the state spaceH2

loc×H1
loc and, consequently, we obtain unique local solution

of (1.51). The second idea is to extend the nonlinearities in (1.51) to the ambient space in
such a way that this local solution stays on the manifold. This is done by the trick with
involutions on tubular neighbourhoods of M explained in Section 1.3.1. The final step of
the proof - that the local solution does not explode - is based on the Lyapunov method
and on particular properties of another suitable extension of the second fundamental form
which appears in the terms of the Lyapunov formulas in such a fortunate form that it can
be estimated by a linear function (though it is, prima facie, quadratic). Then non-explosion
follows from the Gronwall lemma. �

1.8. Weak solutions inH1
loc × L2

loc on R1+1

Considering the existence and uniqueness of strong solutions of (1.45) in H2
loc × H1

loc

for m = 1 satisfactory, the main motivation for studying weak solutions on R1+1 in the
deterministic theory is to have solutions of the Cauchy problem (1.45) for less regular initial
data, especially from the more natural basic energy space H1

loc × L2
loc. In the stochastic

case, there is also an additional interest in having solutions of the equation (1.50) for a
larger class of rougher spatially homogeneous Wiener processes W with finite spectral
measures µ that do not satisfy (1.55).

The deterministic equation (1.45) is known to have uniqe global weak solutions by63

or67 and here is its partial stochastic counterpart.

Definition 1.2. A system of mappings λ = {λp}p∈M is a continuous vector bundles ho-
momorphism from TM to TM if λp : TpM → TpM is linear for every p ∈ M and
M → TM : p 7→ λpXp is continuous for every continuous vector field X on M .

Theorem 1.4. Let m = 1, let µ be a finite spectral measure on R, let Z be a continuous
vector field on M , let λ(t), λ(x) be continuous vector bundles homomorphisms from TM
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to TM and let Θ be a Borel probability measure on H1
loc × L2

loc. Then there exists a
stochastic basis (Ω,F , (Ft),P), a spatially homogeneous (Ft)-Wiener process W with
spectral measure µ and a (Sol)-satisfying solution u of the equation

Dtut = Dxux + (Zu + λ(t)u ut + λ(x)u ux) dW (1.56)

such that Θ is the law of (u(0), ut(0)).

Three remarks about Theorem 1.4 are in place.

Remark 1.11. Firstly, Theorem 1.4 is an existence result where uniqueness is not ad-
dressed being left open (contrary to the deterministic equation (1.45) for which uniqueness
is known to hold). Moreover, the existence in Theorem 1.4 is understood in the weak prob-
abilistic sense, i.e. the stochastic basis and the Wiener process are parts of the solution, and
paths of the solution are continuous in the weak topology only.

Remark 1.12. Secondly, the diffusion Y in (1.56) has to be, comparing to the assump-
tions in Theorem 1.3, of a particular multilinear form to be (L2

loc, τweak)-continuous in the
variables corresponding to the first order terms. Yet, it need not be C1-smooth and mere
continuity is sufficient.

Remark 1.13. Thirdly, the constraint (1.55) upon the spectral measure of the Wiener pro-
cess in Theorem 1.3 is not present in Theorem 1.4 and therefore rougher noises are admis-
sible.

Proof. Following,14 the straightforward idea is to approximate the initial condition, the
multilinear diffusion Y in (1.56) by suitable smooth nonlinearities Y k and the Wiener
process W by spatially homogeneous Wiener processes W k with spectral measures µk

satisfying (1.55). If properly and carefully done, we may indeed find strong solutions uk

of equations

Dtu
k
t = Dxu

k
x + Y kuk(ukt , u

k
x) dW k

by Theorem 1.3 such that laws of (uk, ukt ) are tight in the space of weakly continuous func-
tionsCw(R+;H1

loc×L2
loc) and, therefore, converge in law to a process (u, ut) in the locally

uniform weak topology of H1
loc × L2

loc by the Skorokhod-Jakubowski construction when
convergence of measures is modelled by a convergence of random variables in probability,
see.41

Unfortunately, neither nonlinear term in the extrinsic equation (1.51) nor in the in-
trinsic equation (1.53) allows us to pass in the limit to their corresponding counter-
parts; this is due to the fact that weak convergence of (uk, ukt ) to (u, ut) does not im-
ply convergence of the terms Suk(s)(ukt (s), ukt (s)), Suk(s)(∂xuk(s), ∂xu

k(s)) in (1.51)
and 〈ukt (s),∇ukt (s)X|uk(s)〉 in (1.53) to Su(s)(ut(s), ut(s)) and Su(s)(∂xu(s), ∂xu(s)) and
〈ut(s),∇ut(s)X|u(s)〉 respectively in any topological sense (where X is a smooth test vec-
tor field).

This problem is resolved by a forced strengthening of weak convergence to strong con-
vergence which is done by mollification by a smooth compactly supported density b, i.e.
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b ∗ uk converges to b ∗ u locally uniformly in the inductive limit topology of H1
loc. This

approach is suitably applicable only for the intrinsic equation (1.53) that must be modified
though to a pseudo-intrinsic equation

d 〈ukt , X(b ∗ uk)〉 =
[
∂x〈ukx, X(b ∗ uk)〉 − 〈ukx, db∗ukxX(b ∗ uk)〉

]
dt

+ 〈ukt , db∗uktX(b ∗ uk)〉 dt+〈Suk(ukx, u
k
x)−Suk(ukt , u

k
t ), X(b ∗ uk)〉 dt

+ 〈Y kuk(ukt , u
k
x) dW k, X(b ∗ uk)〉 (1.57)

for every smooth test vector fieldX onM where dξX(p) is the derivative ofX in the direc-
tion ξ at the point p. The additional term 〈Suk(ukx, u

k
x)−Suk(ukt , u

k
t ), X(b ∗uk)〉 in (1.57)

is also tight in C(R+) and converges in law (by the Skorokhod-Jakubowski construction)
to a limit QXb which tends to zero as b→ δ0 for every test X .

In the final step, u is identified with a weak solution (in the probabilistic sense) of the
equation (1.56), i.e. a stochastic basis and a Wiener process are found for which u becomes
a solution of (1.56). �

Remark 1.14. Since the proof takes place in the non-separable and non-metrizable space
Cw(R+;H1

loc×L2
loc) the Jakubowski version41 of the Skorokhod theorem has to be applied.

1.9. Weak solutions in compact homogeneous spaces on R1+m

Existence results for geometric wave equations on higher-dimensional Minkowski spaces
R1+m, m ≥ 2 are available either for m = 2 and any target M , or for any dimension
m ≥ 2 within specific targets M (see Section 1.4.2 for references).

Whereas there is no available result for stochastic geometric wave equations on R1+2

for general targets, we present here the only existence theorem for (1.50) in any dimension
when the target M is a compact Riemannian homogeneous space.

Definition 1.3. The target M is a compact Riemannian homogeneous space provided that
M is a compact Riemannian manifold with a compact Lie group G which acts on M

transitively by isometries.

Remark 1.15. In other words, Definition 1.3 means that there exists a smooth mapping

G×M →M : (g, p) 7→ gp

such that ep = p and (g0g1)p = g0(g1p), where e is the unit element in G, holds for every
g0, g1 ∈ G, p ∈M , transitivity means that there exists p0 ∈M such that {gp0 : g ∈ G} =

M and “by isometries” means that eachM →M : p 7→ gp is an isometry for every g ∈ G.

Example 1.2. The unit sphere is the simplest example of a compact Riemannian homoge-
neous space.

Theorem 1.5. Let m ∈ N, let µ be a finite spectral measure on Rm, let M be a compact
Riemannian homogeneous space, let Z be a continuous vector field onM , let λ(t) be a con-
tinuous function on M , let λ(x1), . . . , λ(xm) be continuous vector bundles homomorphisms
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from TM to TM and let Θ be a Borel probability measure on H1
loc × L2

loc. Then there
exists a stochastic basis (Ω,F , (Ft),P), a spatially homogeneous (Ft)-Wiener process
W with spectral measure µ and a (Sol)-satisfying solution u of the equation

Dtut =
m∑
j=1

Dxjuxj +

Zu + λ(t)u ut +
m∑
j=1

λ(xj)u uxj

 dW (1.58)

such that Θ is the law of (u(0), ut(0)).

Remark 1.16. Equation (1.58) is a multidimensional version of equation (1.56) and Re-
marks 1.11 - 1.13 remain valid here as well, except for the diffusion term λ(t) which is a
general continuous vector bundles homomorphisms from TM to TM in (1.56) whereas it
may be just a real function in (1.58).

Proof. Following,13 the solution is found by a combination of a penalization method and
of a compactness method. Since M is a homogeneous space, we may construct a suitable
identifier of M in Rd as a “level set”, i.e. a smooth function F : Rd → R+ such that
M = [F = 0] and F has further useful properties of technical nature that enable the whole
proof to go through. The idea is to consider weak solutions of penalized SPDEs

∂ttu
k = ∆uk − k∇F (uk) + fk(uk,∇(t,x)u

k) + gk(uk,∇(t,x)u
k) dW k, k ∈ N

where fk and gk approximate the drift and the diffusion in (1.58). We remark that the
solutions uk need not be M -valued. By the properties of F , it is shown that the sequence
{uk} is tight in the space of weakly continuous functions Cw(R+;H1

loc), however, the
sequence {ukt } is tight in a space (L∞loc(R+;L2

loc), weak
∗) where the paths are not deter-

mined uniquely (but just almost everywhere) and this is a problem since the values of the
potential limit at fixed times ut(t) would not be well defined. This inconvenience is over-
come by a trick based on the properties of homogeneous spaces, namely there exist matrices
Ai such that the processes 〈ukt , Aiuk〉 are tight in Cw(R+;Lrloc) for some r ∈ (1, 2), thus
converge to a weakly continuous limit by which we can express ut showing that, in fact, ut
is weakly continuous in L2

loc.
There is again a repeated Skorokhod-Jakubowski construction of random variables con-

verging in probability in the background, (see41).
Finally, u is identified as an M -valued weak solution (in the probabilistic sense) of the

equation (1.58) by some geometrical properties of homogeneous spaces, i.e. a stochastic
basis and a Wiener process are found and complemented to u to become a solution of
(1.58). �

Remark 1.17. The technical-geometrical properties used in the proof were developed from
the techniques in.28

1.10. Energy estimates

Results on the existence and uniqueness of solutions of (1.50) presented in Sections 1.7 -
1.9 are always accompanied by a qualitative property of the solution describing the growth
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of the energy of the solution on backward cones. To keep the exposition at a reasonable
length, we present only the energy estimate for solutions in homogeneous spaces (Theorem
1.5) remarking that analogous results for Theorem 1.3 and Theorem 1.4 are very similar
and can be found in11 and14 while a general exposition on local energy estimates for wave
equations was presented in.54

Towards this end, let s2 = max {|Zp|2 : p ∈ M} and define the energy on spatial cuts
of a backward cone K(x, T ) = {(s, y) : |y − x| ≤ T − s}

ex,T (t, u, v) =

∫
B(x,T−t)

{
1

2
|u(y)|2 +

1

2
|∇u(y)|2 +

1

2
|v(y)|2 + s2

}
dy

for x ∈ Rm, 0 ≤ t ≤ T and (u, v) ∈ H1
loc × L2

loc.

Theorem 1.6. Under the assumptions in Theorem 1.5, there exists a weak solution u of the
equation (1.58) such that

E

{
1A(u(0), ut(0)) sup

s∈[0,t]
L(ex,T (s, u(s), ut(s)))

}
≤ 4eCt

∫
A

L(ex,T (0, ·)) dΘ

holds for every x ∈ Rm, 0 ≤ t ≤ T , A ∈ B(H1
loc × L2

loc) and every nondecreasing
function L ∈ C(R+) ∩ C2(0,∞) satisfying

tL′(t) + max {0, t2L′′(t)} ≤ κL(t), t > 0

where the constant C depends only on the constant c from Proposition 1.9, on the constant
κ and on the L∞(M)-norms of the nonlinearities λ(t), λ(x1), . . . , λ(xm).

Remark 1.18. Typically, L(t) = tq for q ∈ (0,∞) or L(t) = log(t+ 1).

Remark 1.19. Besides the sub-exponential growth of the energy of the solution on back-
ward cones, Theorem 1.6 also yields a pathwise estimation on the growth of the conditional
expectation

E

[
L( sup

s∈[0,t]
ex,T (s, u(s), ut(s))) |(u(0), ut(0)) = z

]
≤ 4eCtL(ex,T (0, z)) Θ− a. e.

1.11. Stochastic Landau-Lifschitz-Gilbert Equation

The Landau-Lifschitz-Gilbert equation is a fundamental equation of Micromagnetism pro-
posed by Landau and Lifschitz in47 and modified by Gilbert in.33 Given a domainD ⊂ Rd,
d ≤ 3, filled in with a ferromagnetic material, the equation describes evolution of the mag-
netisation vector u : D → S2. We will consider here the case when D = [0, 1], see8 for the
case D ⊂ R3. In its simplest version the equation takes form

∂tu = αu×∆u+ β
(
∆u+ |∇u|2u

)
+ (u× h) ◦ Ẇ t > 0, x ∈ (0, 1),

∂u
∂x (t, 0) = ∂u

∂x (t, 1) = 0 t > 0,

u(0, x) = u0(x) x ∈ [0, 1],

(1.59)
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where h : [0, 1] → R3 is a bounded measurable function and W is a one-dimensional
Wiener process. Let us note that for α = 0 equation (1.59) is a special case of equation
(1.1) for the geometric heat flow of maps with values in S2 but the initial manifold is now
an interval instead of a sphere S1 and the Neumann boundary conditions are dictated by
the theory of micromagnetism. All the results presented below remain true for S1. If
β = 0 then we obtain the so-called Heisenberg equation which is equivalent to the two-
dimensional nonlinear Schrödinger equation. Precise values of the constants α ∈ R and
β > 0 are of physical importance but in this presentation we assume for simplicity α =

β = 1. The term u ×∆u being non-dissipative the equation requires some modifications
of the arguments used in previous sections to study the geometric heat flow. We start
with a definition of weak martingale solutions. We will use the notation L2 for the space
L2
(
0, , 1;R3

)
, H1 for the Sobolev space H1,2

(
0, 1;R3

)
and so on. We will denote by A

the selfadjoint extension of the operator − ∂2

∂x2 with the domain

D(A) =

{
φ ∈ H2 :

∂φ

∂x
(x) = 0, x = 0, 1

}
.

For u ∈ D(A) and φ ∈ H1 we have u×∆u ∈ L2 and

〈φ, u×Au〉 = 〈Au, φ× u〉 =

〈
∂u

∂x
,
∂(φ× u)

∂x

〉
.

It is easy to see that if u ∈ H1 then u×Au ∈ H−1.

Definition 1.4. A weak martingale solution (Ω,F , (Ft)t≥0,P,W, u) to equation (1.59)
consists of a filtered probability space (Ω,F , (Ft)t≥0,P) with the filtration satisfying the
usual conditions, a one dimensional (Ft)-adapted Wiener process W = (Wt)t≥0, and a
progressively measurable process u : [0,∞)× Ω→ L2 such that:
(a) for all T > 0,

u(·) ∈ C
(
[0, T ];L2

)
P− a.s.,

(b) for every T > 0

E sup
t≤T

∣∣∣∣∂u∂xu(t)

∣∣∣∣2
L2

<∞,

(c) for every t ≥ 0 we have |u(t, x)|R3 = 1 Leb⊗ P- a.e.,
(d) u×Au ∈ L2

(
0, T ; L2

)
,

(e) For every t ≥ 0

u(t) = e−tAu0 +

∫ t

0

e−(t−s)Au(s)×Au(s)ds+

∫ t

0

e−(t−s)A
∣∣∣∣∂u∂xu(s)

∣∣∣∣2 u(s)ds

+

∫ t

0

e−(t−s)A(u(s)× h) ◦ dW (s).

(1.60)
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Theorem 1.7. Assume that u0 ∈ H1 and h ∈ H1,3. Then there exists a unique weak
martingale solution to equation (1.59). Moreover, for every T > 0 and p ∈ [1,∞)

E sup
t≤T

∣∣∣∣∂u∂x
∣∣∣∣p
L2

<∞.

Proof. To show the existence we use the Galerkin approximations and the compactness
method in the same way as in.8 The uniqueness is proved in.9 �

Theorem 1.8. Assume that u0 ∈ H1,2 and h ∈ H1,3. Then the weak martingale solution u
has the property that u(t) ∈ D(A) for almost every t > 0 and for every T > 0

E
∫ T

0

|Au(t)|2L2dt <∞.

Proof. We will only sketch the arguments that are presented in detail in.9 We write (1.60)
in the form

u(t) =

4∑
i=1

ui(t),

and consider each term separately. Clearly, we have∫ T

0

|Ae−tAu0|2L2dt <∞, (1.61)

and by the maximal regularity

E
∫ T

0

|Au2(t)|2L2dt ≤ E
∫ T

0

|u(t)×∆u(t)|2L2dt <∞. (1.62)

We will consider u3. Let us recall first that the semigroup
(
e−tA

)
is ultracontractive. More

precisely, if 1 ≤ p ≤ q ≤ ∞ then∣∣e−tAf ∣∣Lq ≤ 1

t
1
2 ( 1

p−
1
q )
|f |Lp , (1.63)

and for a certain C > 0 ∣∣∣∣ ∂∂xe−tAf
∣∣∣∣
Lq
≤ C

t
1
2+

1
2 ( 1

p−
1
q )
|f |Lp . (1.64)

Let f(t) =
∣∣∣∂u(t)∂x

∣∣∣2 u(t). Then for every t ≥ 0 we have f(t) ∈ L1 and therefore using
(1.64) with p = 1 and q = 4 we find that for any s ≤ t ≤ T∣∣∣∣ ∂∂xe−(t−s)Af(s)

∣∣∣∣
L4

≤ C

(t− s) 7
8

∣∣∣∣∂u∂xu(s)

∣∣∣∣2
L2

. (1.65)
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Therefore, invoking (1.65) we obtain

E
∫ T

0

∣∣∣∣ ∂∂xu2(t)

∣∣∣∣4
L4

dt = E
∫ T

0

(∫ t

0

∣∣∣∣ ∂∂xe−(t−s)Af(s)

∣∣∣∣
L4

ds

)4

dt

≤ CE sup
t≤T

∣∣∣∣ ∂∂xu(t)

∣∣∣∣8
L2

∫ T

0

(∫ t

0

ds

(t− s)7/8
ds

)4

dt

≤ C1E sup
t≤T

∣∣∣∣ ∂∂xu(t)

∣∣∣∣8
L2

<∞.

(1.66)

This estimate yields f ∈ L2
(
0, T ;L2

)
hence

E
∫ T

0

|Au3(t)|2L2 dt <∞. (1.67)

Since ∣∣∣∣ ∂∂x (u× h)

∣∣∣∣2 ≤ a ∣∣∣∣ ∂∂xu
∣∣∣∣2 + b, (1.68)

we find easily that

E
∫ T

0

|Au4(t)|2L2 dt = E
∫ T

0

∣∣∣∣ ∂∂x (u(t)× h)

∣∣∣∣2
L2

dt <∞. (1.69)

Finally, combining (1.61), (1.62), (1.67), and (1.69) we conclude the proof. �

Remark 1.20. Let us consider equation (1.1) for the heat flow of S2-valued maps defined
on [0, 1]. In this case the argument leading to (1.66) can be easily modified to show that for
every p > 1 ∫ T

0

∣∣∣∣ ∂∂xu(t)

∣∣∣∣p
Lp
dt <∞,

and therefore ∫ T

0

|Au(t)|pLpdt <∞,

for all p > 1. The last estimate yields u(t) ∈ C1+α
(
[0, 1];R3

)
.

The next results is an immediate consequence of Theorem 1.8.

Corollary 1.5. Let u be a weak martingale solution to equation (1.59). Then for every
t ≥ 0

u(t) = u0 +

∫ t

0

Au(s)ds+

∫ t

0

∣∣∣∣∂u(s)

∂x

∣∣∣∣2 ds+

∫ t

0

(u(s)× h) ◦ dW (s),

where the first two integrals are the Bochner integrals in L2 and the last one is the
Stratonovitch integral in L2.
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P201/10/0752.

References

1. W. F. Brown, Jr., Thermal fluctuations of a single-domain particle, Phys. Rev. 130, 1677–1686
(1963)
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